No hay publicaciones.
No hay publicaciones.

ARN

ARN
El ácido ribonucleico (ARN o RNA) es un ácido nucleico, polímero lineal de nucleótidos formando una larga cadena. El eje de la cadena lo forman grupos fosfato y azúcares ribosa de forma alternativa del que toma su nombre. Los nucleótidos del ARN contienen el azúcar ribosa y entre sus bases nitrogenadas al uracilo, a diferencia del ácido desoxirribonucleico (ADN) cuyo azúcar es una desoxirribosa y contiene a la timina en vez del uracilo. La función principal del ARN es servir como intermediario de la información que lleva el ADN en forma de genes y la proteína final codificada por esos genes.Fue descubierto por Severo Ochoa.
El ARN es transcrito desde el ADN por enzimas llamadas ARN polimerasas y procesado en el transcurso por muchas más proteínas. El uracilo, aunque es muy diferente, puede formar puentes de hidrógeno con la adenina, lo mismo que la timina lo hace en el ADN. El porqué el ARN contiene uracilo en vez de timina es un enigma del que nadie sabe la respuesta.
Flujo de la información genética [editar]
El material genético de las células se encuentra en forma de ADN. Dentro de las moléculas de ADN se encuentra la información necesaria para sintetizar las proteínas que utiliza el organismo; pero el proceso no es lineal, es bastante complejo. El ADN no se traduce directamente en proteínas.
En las células eucariotas el ADN se encuentra encerrado en el núcleo. La síntesis de ADN se hace en el núcleo, así como también la síntesis de ARN, pero la síntesis de proteínas ocurre en el citoplasma. El mecanismo por el cual la información se trasvasa desde el núcleo celular al citoplasma es mediante la trascripción del ARN a partir del ADN y de la traducción de proteínas a partir de ARN.
ARN, el mensajero [editar]
Parte del ADN se transcribe en ARN. El ARN va como un mensajero al citoplasma y allí el ribosoma es el lugar físico para la traducción de los genes a proteínas.
Tipos de ARN [editar]
El ARN mensajero es el ácido ribonucleico que contiene la información genética procedente del ADN para utilizarse en la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos.
El ARN mensajero es un ácido nucleico monocatenario, al contrario que el ADN que es bicatenario
El ARN de transferencia, ARN transferente o ARNt es un tipo de ácido ribonucleico encargado de transportar los aminoácidos a los ribosomas para incorporarlos a las proteínas, durante el proceso de síntesis proteica.
El ARN ribosómico es el más abundante de la célula. Está formado por una sola cadena de nucleótidos, aunque presenta zonas de doble hélice debido a su conformación tridimensional.
Este tipo de ARN presenta las siguientes características:
Forma parte de las subunidades del ribosoma junto con algunas proteínas.
Participa en la síntesis de proteínas en el ribosoma.
Existen varios tipos de ARNr, cada uno con un tamaño y estructura característicos.
Los ARN ribosómicos se han venido clasificando tradicionalmente según su coeficiente de sedimentación, medido en svedbergs (S). De esta manera podemos decir que en organismos procariotas existen tres ARNr distintos (5S, 16S y 23S) y en organismos eucariotas cuatro (5S, 5'8S, 18S, 28S).
El ARN interferente (o ARN de interferencia), abreviado ARNi, es una molécula de ARN que suprime la expresión de genes específicos mediante mecanismos conocidos globalmente como ribointerferencia o interferencia por ARN.
El término tal cual no se usa mucho, sino que se usan los de distintos tipos de ARN que se engloban en esta categoría:
ARN en otros organismos [editar]
El ARN es el principal material genético usado en los organismos llamados virus, y el ARN también es importante en la producción de proteínas en otros organismos vivos. La mecánica del ARN en los organismos eucarioticos es similar en los organismos procarióticos. El ARN puede moverse dentro de las células de los organismos vivos y por consiguiente sirve como una suerte de mensajero genético, transmitiendo la información guardada en el ADN de la célula, desde el núcleo hacia otras partes de la célula donde se usa para ayudar a producir proteínas. Una sola hebra de ADN se usa a la vez, el RNA polimerasa es la enzima que cataliza el proceso y las bases nitrogenadas son las mismas. Solo que en los procariotes, no existe el núcleo.
Traducción [editar]
El ARN se transcribe a partir de una de las dos cadenas del ADN. En caso contrario, al transcribirse ambas al mismo tiempo, de una de las hélices saldría una proteína y de la otra algo totalmente diferente.
Por ejemplo, si en una de las cadenas de ADN hubiera: GATACA, en la otra cadena, la homóloga, debería haber: CTATGT.
La primera al transcribirse a ARN daría dos codones: GAU-ACA. La segunda CUA-UGU.
La primera formaría la cadena de aminoácidos siguiente. En el primer caso: Ácido Aspártico-Treonina y en el segundo caso: Leucina-Cisteína.
Que sólo se transcriba una hélice no significa que siempre sea la misma a lo largo de todo el cromosoma. Puede transcribirse una hélice en un sitio y otra en otro.
En la traducción de codones a aminoácidos intervienen otras moléculas de ARN, las llamadas ARN de transferencia.
Algunas moléculas de ARN presentan actividad catalítica, y son conocidas como ribozimas. La mayoría de los ARN son autocatalíticos, ya que catalizan su propio procesamiento. Su hallazgo es relativamente reciente, y antes se consideraba que solo las proteínas eran las únicas macromoléculas capaces de poseer actividad catalítica.
Bases Nitrogenadas y complemento [editar]
Están formadas por pares de bases, la unión de estas es semejante a la del ADN, pero difiere en que la adenina (A) se une al uracilo (U), entonces su complemento es:
- Uracilo (U) con Adenina (A)
- Citosina (C) con Guanina (G)=
U - A
C - G
Azúcar [editar]
El ARN contiene el azúcar pentosa (o sea de con 5 carbonos) llamada ribosa y sus moléculas están formadas también por pares de bases, de ahí ribonucleico.

ADN

ADN

El ácido desoxirribonucleico, frecuentemente abreviado ADN (y también DNA, del inglés Deoxyribonucleic Acid), constituye el principal componente del material genético de la inmensa mayoría de los organismos, junto con el ARN, siendo el componente químico primario de los cromosomas y el material con el que los genes están codificados.
La función Principal del ADN es mantener a través del código genético, la información genética necesaria para crear un ser vivo idéntico a aquel del que proviene (o casi similar, en el caso de mezclarse con otra cadena como es el caso de la reproducción sexual o de sufrir mutaciones. Las cadenas de polipeptídicas codificadas por el ADN pueden ser estructurales como las proteínas de los músculos, cartílagos , pelo, etc., bien funcionales como las de la hemoglobina o las innumerables enzimas del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para nuestras proteínas.
Para hacerse una idea, una diminuta cantidad de ADN en un huevo fertilizado, determina casi todas las características físicas del animal en su desarrollo completo; por ejemplo: la diferencia entre un ser humano y una rana está codificada en una parte relativamente pequeña de este ADN.
En los organismos procariotas (moneras), así como en las mitocondrias y cloroplastos eucariotas, el ADN se presenta como una doble cadena (de cerca de 1 mm de longitud), circular y cerrada, que toma el nombre de cromosoma bacteriano, que es circular excepto en las micoplasmas, que es lineal. En los Eucariotas el ADN se encuentra localizado principalmente en el núcleo, apareciendo el superenrrollamiento (trenzamiento de la trenza) y la asociación con proteínas histónicas y no histónicas. El ADN se enrolla (dos vueltas) alrededor de un octeto de proteínas histónicas formando un nucleosoma, estos quedan separados por una secuencia de ADN de hasta 80 pares de bases, formando un "collar de perlas" o más correctamente denominado fibra de cromatina, siendo la estructura propia del núcleo interfásico, que no ha entrado en división. Este collar de nucleosomas vuelve a enrollarse y cada 6 nucleosomas constituyen un "paso de rosca" por medio de histoma H1 formando estructuras del tipo solenoide. En los virus, el ADN puede presentarse como una doble hélice cerrada, como una doble hélice abierta o simplemente como una única hebra lineal.
El ADN Se conoce desde hace más de cien años. Fue aislado por primera vez en 1869 por un médico alemán llamado Friedrich Miescher, en la misma década notable en la cual Darwin publicó El Origen de las Especies y Mendel presentó sus resultados a la Sociedad de Historia Natural de Brünn. La sustancia que Miescher aisló era blanca, azucarada, ligeramente ácida y contenía fósforo, la encontró en el pus de las vendas y en el esperma de salmón; dado que la encontró en el núcleo de las células, la llamo nucleína, , aunque no fue reconocida hasta 1943 gracias al experimento realizado por Oswald Avery. Recién en 1953 Watson y Crick, en Inglaterra descubrieron en base a información de otros científicos la estructura molecular del ADN. Lo que permitió entender como la información genética es almacenada y procesada.
Naturaleza del adn
1.1 composición:
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice y fue descubierta en 1953, a partir de una fotografía de Rosalind Franklin, por James Watson y Francis Crick (el artículo Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid fue publicado el 25 de abril de 1953 en Nature y dejaba claro el modo en que el ADN se podía "desenrollar" para que fuera posible su lectura o copia)... Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno, Este emparejamiento corresponde a la observación ya realizada por Erwin Chargaff (1905-2002). Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Dos unidades de medida muy utilizadas son la kilobase (kb) que equivale a 1.000 pares de bases, y la megabase (Mb) que equivale a un millón de pares de bases. Los componentes del ADN (polímero) son los nucleótidos (monómeros); cada nucleótido está formado por un:
1-acido fosfórico (grupo fosfato)
2-una desoxirribosa
3-base nitrogenada
El ADN lo forman cuatro tipos de nucleótidos, diferenciados por sus bases nitrogenadas divididas en dos grupos: dos purínicas denominadas adenina (A) y guanina (G) y dos pirimidínicas denominadas citosina (C) y timina (T). La estructura del ADN es una pareja de largas cadenas de nucleótidos. El complemento es el siguiente:
· Adenina (A) con Timina (T)--->A - T
· Citosina (C) con Guanina (G)->C – G
1.1.1ácido fosfórico
El Ácido fosfórico; de fórmula H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) tres
(trifosfato: ATP) grupos de acido fosfórico
1.1.2 desoxirribosa
Es un monosacárido de 5 átomos de carbono (pentosa) derivado de la ribosa, que forma parte de la estructura de
nucleótidos del ADN
Su fórmula es C 5 H 10 O 4 Además de que esta contiene toda la información genética que será transferida así de
generación en generación. Por todo esto la desoxirribosa tiene una gran importancia en todo ser vivo existente. La
información genética no se transfiere en la desoxirribosa pero sí es una parte fundamental de todo proceso de información
genética ya que de éste se derivará la ribosa
1.1.3 bases nitrogenadas
1.1.3.1 timina:
La timina es una de las cuatro bases nitrogenadas que forman parte del ADN y en el código genético se representa con la
letra T. Forma el nucleósido timidina (dThd) y el nucleótido timidilato (dTMP). En el ADN, la timina siempre se empareja
con la adenina. La timina es una base orgánica nitrogenada de fórmula C5 H6 N2 O2 y es un compuesto cíclico derivado de
la pirimidina (es una ‘base pirimidínica’):
1.1.3.2 adenina:
La adenina es una de las cinco bases nitrogenadas que forman parte de los ácidos nucleicos y en el código genético se
representa con la letra A. En el ADN la adenina siempre se empareja con la timina. Es un compuesto orgánico nitrogenado
de fórmula C5H5N5. Es un derivado de la purina (es una ‘base púrica’) en la que un hidrógeno ha sido sustituido por un
grupo amino (NH2)
La adenina, junto con la timina, fue descubierta en 1885 por el bioquímico alemán Albrecht Kossel.
1.1.3.3 guanina
La guanina es una de las cinco bases nitrogenadas que forman parte de los ácidos nucleicos y en el código genético se
representa con la letra G. La guanina siempre se empareja en el ADN con la citosina mediante tres enlace de hidrógeno.
1.1.3.4 citosina
La citosina es una de las cinco bases nitrogenadas que forman parte de los ácidos nucleicos) y en el código genético se
representa con la letra C.).
Es un derivado pirimidínico, con un anillo aromático y un grupo amino en posición 4 y un grupo cetónico en posición 2.
Su fórmula química es C4H5N3O y su masa molecular es de 111.10 unidad masa atómicas. La citosina fue descubierta en 1894
cuando fue aislada en tejido del timo de carnero.
1.2 estructura:
En cuanto a la estructura, decir que el ADN es una molécula bicatenaria; es decir: esta formada por dos cadenas dispuestas de forma paralela y con las bases nitrogenadas enfrentadas. En su estructura tridimensional, se pueden distinguir distintos niveles:
1.2.1 estructura primaria:
Nos muestra la secuencia de nucleótidos encadenados. Es en estas cadenas donde se encuentra la información
genética, y dado que el esqueleto es el mismo para todos, la diferencia de la información radica en la distinta
secuencia de bases nitrogenadas. Esta secuencia presenta un código, que presenta una información u otra, según el orden
de las bases.
1.2.2 estructura secundaria:
Es una estructura en doble hélice. Permite explicar el almacenamiento de la información genética y el mecanismo de
duplicación del ADN. Fue postulada por Watson y Crick, basándose en:
-La difracción de rayos X que habían realizado Franklin, Wilkins
-La equivalencia de bases de Chargaff,que dice que la suma de adeninas más guaninas es igual a la suma de timinas más
citosinas.
Es una cadena doble, dextrógira o levógira según el tipo de ADN. Ambas cadenas son complementarias, pues la adenina de
una se une a la timina de la otra, y la guanina de una a la citosina de la otra. Ambas cadenas son antiparalelas, pues el
extremo 3´ de una se enfrenta al extremo 5´ de la otra.
Existen tres modelos de ADN. El ADN de tipo B es el más abundante y es el descubierto por Watson y Crick.
1.2.3 estructura terciaria
Se refiere a como se almacena el ADN en un volumen reducido. Varía según se trate de organismos procariotas o
eucariotas:
a) En procariotas: se pliega como una súper-hélice en forma, generalmente, circular y asociada a una pequeña cantidad de
proteínas. Lo mismo ocurre en la mitocondrias y en los cloroplastos.
b) En eucariotas: el empaquetamiento ha de ser más complejo y compacto y para esto necesita la presencia de proteínas,
como son las histonas y otras de naturaleza no histona(en los espermatozoides las proteínas son las protaminas ) A esta
unión de ADN y proteínas se conoce como cromatina, en la cual se distinguen diferentes niveles de organización
Propiedades
Entre las funciones y propiedades del ADN podemos resaltar que
1- El ADN controla la actividad de la célula.
2- en ciertos casos, comúnmente derivados del caso anterior, el ADN puede llegar a tener cierta conductividad, según un estudio realizado.
Gracias al modelo de doble hélice el ADN:
3- Es el que lleva la información genética de la célula, ya que las unidades de ADN, llamadas genes, son las responsables de las características estructurales y de la transmisión de estas características de una célula a otra en la división celular. Los genes se localizan a lo largo del cromosoma.
4- El ADN tiene la propiedad de duplicarse durante la división celular para formar dos moléculas idénticas, para lo cual necesita que en el núcleo existan nucleótidos, energía y enzimas.
5- Capacidad de mutación: justificando los cambios evolutivos

Enlace de hidrógeno
La adhesión de las dos hebras de ácido nucleico se debe a un tipo de unión química conocido como enlace de hidrógeno o puente de hidrógeno. Los puentes de hidrógeno son uniones más débiles que los típicos enlaces químicos covalentes, tales como los que conectan los átomos en cada hebra de ADN, pero más fuertes que interacciones hidrófobas individuales, enlaces de Van der Waals, etc... El hecho que las hebras de la hélice de ADN estén unidas mediante puentes de hidrógeno hace que éstas puedan separarse entre sí con relativa facilidad, por ejemplo mediante un incremento de la temperatura, quedando intactas en sus componentes. La fortaleza relativa de la unión entre las dos hebras del ADN reside en la suma de gran cantidad de enlaces de hidrógeno a lo largo de las dos hebras paralelas. Se forman dos enlaces de hidrógeno por cada unión A=T y tres por cada emparejamiento C≡G.
Papel de la secuencia
En un gen, la secuencia de los nucleótidos a lo largo de una hebra de ADN se transcribe a un ARN mensajero (ARNm) y esta secuencia a su vez se traduce a una proteína que un organismo es capaz de sintetizar o "expresar" en uno o varios momentos de su vida, usando la información de dicha secuencia.
La relación entre la secuencia de nucleótidos y la secuencia de aminoácidos de la proteína viene determinada por el código genético, que se utiliza durante el proceso de traducción o síntesis de proteínas. La unidad codificadora del código genético es un grupo de tres nucleótidos (triplete), representado por las tres letras iniciales de las bases nitrogenadas (por ej., ACT, CAG, TTT). Cuando estos tripletes están en el ARN mensajero se les llama codones. En el ribosoma cada codón del ARN mensajero interacciona con una molécula de ARN de transferencia (ARNt) que contenga el triplete complementario (denominado anticodón). Cada ARNt porta el aminoácido correspondiente al codón de acuerdo con el código genético, de modo que el ribosoma va uniendo los aminoácidos para formar una nueva proteína de acuerdo con las "instrucciones" de la secuencia del ARNm. Existen 64 codones posibles, por lo cual corresponde más de uno para cada aminoácido; algunos codones indican la terminación de la síntesis, el fin de la secuencia codificante; estos codones de terminación o codones de parada son UAA, UGA y UAG (en inglés, nonsense codons o stop codons).
En muchas especies de organismos, sólo una pequeña fracción del total de la secuencia del genoma codifica proteínas; por ejemplo, sólo un 3% del genoma humano consiste en exones que codifican proteínas. La función del resto por ahora sólo es especulación, es conocido que algunas secuencias tienen afinidad hacia proteínas especiales que tienen la capacidad de unirse al ADN (como los homeodominios, los complejos receptores de hormonas esteroides, etc.) que tienen un papel importante en el control de los mecanismos de trascripción y replicación. Estas secuencias se llaman frecuentemente secuencias reguladoras, y los investigadores asumen que sólo se ha identificado una pequeña fracción de las que realmente existen. El llamado ADN basura representa secuencias que no parecen contener genes o tener alguna función; la presencia de tanto ADN no codificante en genomas eucarióticos y las diferencias en tamaño del genoma representan un misterio que es conocido como el enigma del valor de C.
Algunas secuencias de ADN desempeñan un papel estructural en los cromosomas: los telómeros y centrómeros contienen pocos o ningún gen codificante de proteínas, pero son importantes para estabilizar la estructura de los cromosomas. Algunos genes codifican ARN: ARN ribosómico, ARN de transferencia), ARN de interferencia (ARNi, que son ARN que bloquean la expresión de genes específicos). La estructura de intrones y exones de algunos genes (como los de inmunoglobulinas y protocadherinas) son importantes por permitir cortes y empalmes alternativos del pre-ARN mensajero que hacen posible la síntesis de diferentes proteínas a partir de un mismo gen (sin esta capacidad no existiría el sistema inmunológico). Algunas secuencias de ADN no codificante representan pseudogenes que tienen valor evolutivo ya que permiten la creación de nuevos genes con nuevas funciones. Otros ADN no codificantes proceden de la duplicación de pequeñas regiones del ADN; esto tiene mucha utilidad ya que el rastreo de estas secuencias repetitivas permite estudios sobre el linaje humano.
La secuencia también determina la susceptibilidad del ADN para ser cortado por determinadas enzimas de restricción, lo que se aplica en la realización de la técnica de RFLP, popularmente conocida como la Huella genética, que se usa para determinar la identidad y la paternidad de personas, aunque esta poderosa técnica también tiene aplicaciones en agricultura, ganadería y microbiología. (Actualmente también se le llama Huella genética a variaciones de la técnica de PCR en la que no se utilizan enzimas de restricción sino fragmentos amplificados de ADN).
El ADN como almacén de información
En realidad se puede considerar así, un almacén de información (mensaje) que se trasmite de generación en generación, conteniendo toda la información necesaria para construir y sostener el organismo en el que reside.
Se puede considerar que las obreras de este mecanismo son las proteínas. Estas pueden ser estructurales como las proteínas de los músculos, cartílagos, pelo, etc., o bien funcionales como las de la hemoglobina, o las innumerables enzimas, del organismo. La función principal de la herencia es la especificación de las proteínas, siendo el ADN una especie de plano o receta para nuestras proteínas. Unas veces la modificación del ADN que provoca disfunción proteica lo llamamos enfermedad, otras veces, en sentido beneficioso, dará lugar a lo que conocemos como evolución.
Las alrededor de treinta mil proteínas diferentes en el cuerpo humano están hechas de veinte aminoácidos diferentes, y una molécula de ADN debe especificar la secuencia en que se unan dichos aminoácidos.
El ADN en el genoma de un organismo podría dividirse conceptualmente en dos, el que codifica las proteínas y el que no codifica. En el proceso de elaborar una proteína, el ADN de un gen se lee y se transcribe a ARN. Este ARN sirve como mensajero entre el ADN y la maquinaria que elaborará las proteínas y por eso recibe el nombre de ARN mensajero. El ARN mensajero instruye a la maquinaria que elabora las proteínas, para que ensamble los aminoácidos en el orden preciso para armar la proteína.
El dogma central de la biología molecular plantea que el flujo de actividad y de información es: ADN → ARN → proteína
En la actualidad se asume que este dogma es cierto en la mayoría de los casos, pero se conocen importantes excepciones: En algunos organismos (virus de ARN) la información fluye de ARN a ADN, este proceso se conoce como "transcripción inversa o reversa". Adicionalmente, se sabe que existen secuencias de ADN que se transcriben a RNA y son funcionales como tales, sin llegar a traducirse a proteína nunca.
El ADN basura
El mal llamado ADN basura corresponde a secuencias del genoma procedentes de duplicaciones, translocaciones y recombinaciones de virus, etc., que parecen no tener utilidad alguna. No deben confundirse con los intrones. Corresponde a más del 90% de nuestro genoma, que cuenta con 20.000 ó 25.000 genes. Inicialmente se pensaba que no tenían utilidad alguna, pero distintos estudios recientes apuntan a que eso puede no ser cierto en absoluto. Entre otras funciones, se postula que el llamado "ADN basura" regula la expresión diferencial de los genes. También es llamado Intrón, o sea ADN no codificante.
Chips de ADN (Microarrays)
Son colecciones de oligonucleótidos de ADN complementario dispuestos en hileras fijadas. Estos chips de ADN se usan para el estudio de mutaciones genéticas de genes conocidos o para monitorizar la expresión génica de una preparación de ARN.
Aplicaciones
La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina. A través de la tecnología del ADN recombinante los científicos pueden modificar microorganismos que se llegan a convertir en auténticas fábricas para producir grandes cantidades de sustancias útiles; por ejemplo la insulina . La medicina forense utiliza técnicas desarrolladas en el curso de la investigación sobre el ADN para identificar delincuentes. También la agricultura y la ganadería se valen ahora de técnicas de manipulación de ADN conocidas como ingeniería genética y biotecnología. Finalmente existen otras tan valiosas como el protagonismo que cobra dicho acido en el proyecto genoma humano, su papel imprescindible en los organismos transgénicos o destacar su intervencionismo en la reacción en cadena de la polimerasa)
Ultimos desarrollos
El 31 de marzo de 2004, Ronald Breaker, de la Universidad de Yale, y sus colegas, demostraron que es posible crear equivalentes de ADN. Se logran sintetizar hebras de ADN que catalizan la unión (ligación) entre oligonucleótidos. Hasta el momento, la actividad catalítica sólo se había hallado en ARN (además de en proteínas). (Nature)
Clases de ADN
ADN recombinante
ADN mitocondrial
ADN polimerasa
ADN fósil
ADN complementario
ADN superenrollado
Receptores en la Transcripción de Genes
Véase también
Cromatina
Genoma
Genoma humano
Glosario relacionado con genoma
Genes MEIS
Cerberus
Genes HOX y PARAHOX
Notas

Enlaces externos
Commons
Commons alberga contenido multimedia sobre Ácido desoxirribonucleico.
Preguntas y respuestas sobre el ADN Lugar para hacer todas las preguntas que quieras relacionadas con el ADN
Experimento para extraer ADN
Foro de Investigadores Argentinos Artículos interesantes, papers, proyectos, etc.
Foro de Estudiantes de Biología de Argentina
Ácidos nucleicos en Google
«Descifrar la vida» Gráfico interactivo
Diagrama en español: "El secreto de la vida"
Genética de poblaciones


LA HERENCIA

La Herencia, perspectiva histórica
Durante gran parte de la historia de la humanidad las personas desconocían los detalles científicos de la concepción y de como trabajaba la herencia. Por cierto los niños eran concebidos y por cierto se veía que existía una semejanza entre padres e hijos, pero los mecanismos no eran conocidos. Los filósofos griegos tenían varias ideas: Teofrasto (371-287 a.C.) comprendía la diferencia entre las flores masculinas y femeninas, decía que "los machos debían ser llevados a las hembras" dado que los machos "hacían madurar y persistir" a las flores hembras; Hipócrates (460?- 377? a.C.) especuló, que las "semillas" se producían en diferentes partes del cuerpo y se transmitían a los hijos al momento de la concepción, y Aristóteles pensó que el semen masculino y el semen femenino (así se llamaba al flujo menstrual) se mezclaban en la concepción, algunos pensaban que ni siquiera este tipo de mezclas eran necesarias, las formas "simples" (gusano, moscas...) nacían por generación espontánea.

Durante los 1700s, Anton van Leeuwenhoek (1632-1723, para los no holandeses lii-uen-huuk seria una pronunciación bastante aceptable; sus aportes y los de otros pioneros pueden leerse en una magnífica novelización) descubre "animálculos" en el esperma humano y de otros animales. Algunos de los que miraban por los primeros microscopios soñaron ver un "pequeño hombrecito" (homúnculo) dentro de cada espermatozoide. Sostuvieron que la única contribución de la hembra para la próxima generación era proveer el ambiente para su desarrollo. En oposición la escuela de los ovistas creía que el futuro hombre estaba en el óvulo, y que el espermatozoide solo lo estimulaba, creían también que había huevos para hembras y para machos.
La pangénesis sostenía la idea que machos y hembras forman "pangenes" en cada órgano. Estos "pangenes" se movían a través de la sangre a los genitales y luego a los recién nacidos. El concepto, originado en los griegos influenció a la biología hasta hace solo unos 100 años. Los términos "sangre azul", "consanguíneo", "hermano de sangre", "mezcla de sangre", "sangre gitana" y otros similares surgen de estos conceptos. Francis Galton, un primo de Charles Darwin, desecho experimentalmente la pangénesis.
Las teoría de la mezcla ("Blending theories") suplantó a la de los espermistas y ovistas durante el siglo 19. La mezcla de óvulos y espermatozoides daban como resultado la progenie que era una "mezcla" ("blend") de las características de los padres. Las células sexuales se conocían colectivamente como gametos. De acuerdo con la teoría de la mezcla, cuando un animal de color negro se cruzaba con uno blanco la progenie debía ser gris y, a menudo, este no era el resultado. La teoría de la mezcla obviaba, entre otras, explicar el salto de generación de algunas características.
Charles Darwin en su teoría de la evolución, se vio forzado a reconocer que la mezcla no era un factor (o al menos no el factor principal) y sugirió que la ciencia, en la mitad de los 1800s, no tenía la respuesta correcta al problema. La respuesta vino de un contemporáneo, Gregor Mendel, si bien Darwin nunca conoció el trabajo de Mendel.

Conceptos básicos de la genética
Resulta útil recordar algunos conceptos previos para comprender los experimentos de Mendel, aunque este monje no haya tenido conocimiento de los genes o los cromosomas...
Meiosis: división celular que origina 4 células con la mitad de la dotación cromosómica de la célula orginal (haploides). Los cromosomas homólogos se separan y cada célula (gameta) recibe uno de los homólogos del par.
Carácter: característica observable y transmitida por los genes, ejemplo: color de las flores
Fenotipo : propiedades observables del genotipo y en el cual contribuye el medio ambiente.
Cromosomas Homólogos: cromosomas que se aparean durante la meiosis. Poseen igual longitud, posición del centrómero y comparten los mismos genes. Excepción : cromosomas X e Y que no comparten las características anteriores pero sí se consideran homólogos por aparearse en la meiosis.
Gen (del griego genos= nacimiento) son segmentos específicos de ADN (cromosoma) responsable de un determinado carácter; son la unidad funcional de la herencia. El botánico danés Wilhelm Johannsen (1857 - 1927) acuño este nombre, en 1909, para nombrar a los elemente de Mendel (también acuñó "fenotipo", "genotipo" y "selección").
Alelo: Formas alternativas de un gen en un mismo locus. Por ejemplo 2 posibles alelos en el locus v de la cebada son v y V. El término de alelo ó alelomorfo fue acuñado por William Bateson; literalmente significa "forma alternativa".
Locus: es el lugar específico de un gen en un cromosoma.
Homocigoto: organismo que tiene dos copias o alelos iguales de un gen en los dos homólogos, también llamado raza pura.
Heterocigoto: cuando los dos alelos son diferentes, en este caso el alelo dominante es el que se expresa.


Cronología de descubrimientos notables [editar]
Año
Acontecimiento
1859
Charles Darwin publica El Origen de las Especies
1865
Se publica el trabajo de Gregor Mendel
1903
Se descubre la implicación de los cromosomas en la herencia
1905
El biólogo británico William Bateson acuña el término "Genetics" en una carta a Adam Sedgwick
1910
Thomas Hunt Morgan demuestra que los genes residen en los cromosomas
1913
Alfred Sturtevant crea el primer mapa genético de un cromosoma
1918
Ronald Fisher publica On the correlation between relatives on the supposition of Mendelian inheritance —la síntesis moderna comienza.
1923
Los mapas genéticos demuestran la disposición lineal de los genes en los cromosomas
1928
Se denomina mutación a cualquier cambio en la secuencia nucleotídica de un gen, sea esta evidente o no en el fenotipo
1928
Fred Griffith descubre una molécula hereditaria transmisible entre bacterias (véase Experimento de Griffith)
1931
El entrecruzamiento es la causa de la recombinación
1941
Edward Lawrie Tatum y George Wells Beadle demuestran que los genes codifican proteínas; véase el dogma central de la Genética
1944
Oswald Theodore Avery, Colin McLeod y Maclyn McCarty demuestran que el ADN es el material genético (denominado entonces principio transformante)
1950
Erwin Chargaff demuestra que las proporciones de cada nucleótido siguen algunas reglas (por ejemplo, que la cantidad de adenina, A, tiende a ser igual a la cantidad de timina, T). Barbara McClintock descubre los transposones en el maíz
1952
El experimento de Hershey y Chase demuestra que la información genética de los fagos reside en el ADN
1953
James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice
1956
Jo Hin Tjio y Albert Levan establecen que, en la especie humana, el número de cromosomas es 46
1958
El experimento de Meselson y Stahl demuestra que la replicación del ADN es semiconservativa
1961
El código genético está organizado en tripletes
1964
Howard Temin demuestra, empleando virus de ARN, excepciones al dogma central de Watson
1970
Se descubren las enzimas de restricción en la bacteria Haemophilius influenzae, lo que permite a los científicos manipular el ADN
1977
Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN por primera vez trabajando independientemente. El laboratorio de Sanger completa la secuencia del genoma del bacteriófago Φ-X174
1983
Kary Banks Mullis descubre la reacción en cadena de la polimerasa, que posibilita la amplificación del ADN
1989
Francis Collins y Lap-Chee Tsui secuencian un gen humano por primera vez. El gen codifica la proteína CFTR, cuyo defecto causa fibrosis quística
1990
Se funda el Proyecto Genoma Humano por parte del Departamento de Energía y los Institutos de la Salud de los Estados Unidos
1995
El genoma de Haemophilus influenzae es el primer genoma secuenciado de un organismo de vida libre
1996
Se da a conocer por primera vez la secuencia completa de un eucariota, la levadura Saccharomyces cerevisiae
1998
Se da a conocer por primera vez la secuencia completa de un eucariota pluricelular, el nematodo Caenorhabditis elegans
2001
El Proyecto Genoma Humano y Celera Genomics presentan el primer borrador de la secuencia del genoma humano
2003
(14 de abril) Se completa con éxito el Proyecto Genoma Humano con el 99% del genoma secuenciado con una precisión del 99,99% [1]
Subdivisiones de la genética [editar]
La genética se subdivide en varias ramas, como:
Clásica o mendeliana: Se preocupa del estudio de los cromosomas y los genes y de cómo se heredan de generación en generación.
Cuantitativa, que analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala
Molecular: Estudia el ADN, su composición y la manera en que se duplica. Asimismo, estudia la función de los genes desde el punto de vista molecular.
de Poblaciones y evolutiva: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
del desarrollo: Se preocupa de cómo los genes controlan el desarrollo de los organismos
Las leyes de la herencia fueron derivadas de las investigaciones sobre hibridación entre plantas realizadas por Gregor Mendel, en el siglo XIX. Entre los años 1856 y 1863 cultivó y probó cerca de 28,000 plantas del guisante. Sus experimentos le llevaron a concebir dos generalizaciones que después serían conocidas como Leyes de Mendel de la herencia o herencia mendeliana. Las conclusiones se encuentran descritas en su artículo titulado: "Experimentos sobre hibridación de plantas" que fue leído a la Sociedad de Historia Natural de Brno el 8 de febrero y el 8 de marzo de 1865 y posteriormente publicado en 1866.[1]
Los resultados de Mendel fueron prácticamente desconocidos por más de tres décadas. Incluso el propio Mendel no había detectado la posible aplicabilidad, y creía que sus leyes sólo podían ser aplicadas a ciertos tipos de especies. En 1900, sin embargo, el trabajo de Mendel fue "re-descubierto" por tres científicos europeos, Hugo de Vries, Carl Correns, y Erich von Tschermak. La naturaleza exacta del descubrimiento dio lugar a un intenso debate: De Vries fue el primero que publicó el tema, y Correns apuntó a la antelación de Mendel tras haber leído el artículo de De Vries y declaró que el trabajo no era original. Algunos investigadores posteriores acusaron a Von Tschermak de no haber comprendido los resultados de Vries y haber juzgado tan severamente.
No obstante el "re-descubrimiento" hizo que el mendelismo reviviera aunque lo hizo como una teoría controvertida. Su más vigoroso promotor en Europa era William Bateson, que fue el primero en acuñar el término "genética", "gen", y "alelo" para describir muchos de los resultados de esta nueva ciencia biológica. El modelo de herencia fue muy replicado por los otros biólogos debido a que la herencia era discontinua, en oposición a la aparente continuidad observada en la naturaleza. Muchos biólogos rechazaron la teoría por no llegar a saber si las leyes eran aplicables a todas las especies. Algunos trabajos posteriores de biólogos y estadísticos tales como R.A. Fisher mostraron que los experimentos realizados por Mendel tenían globalidad en todas las especies, mostrando ejemplos concretos de la naturaleza. Thomas Hunt Morgan y su asistente pudieron integrar en el modelo teórico de Mendel con la teoría cromosómica de la herencia, en la que los cromosomas de unas células se investigaron detenidamente hasta poder comprobar los mecanismos de herencia, creando así lo que se denomina genética clásica, lo que hizo que la teoría de Mendel se cimentara un lugar en la historia.
Leyes de Mendel [editar]
Ley de la Uniformidad de la primera Generación Filial [editar]
Conocida también como Primera Ley de Mendel. Se formula diciendo que, al cruzar dos variedades cuyos individuos tienen razas puras ambos para un determinado carácter (por ejemplo, un genotipo es AA o aa), todos los híbridos de la primera generación son similares fenotípicamente. Es un error muy extendido suponer que la uniformidad de los híbridos es una ley de transmisión, pues la dominancia nada tiene que ver con la transmisión, sino con la expresión del genotipo. Por lo que esta observación mendeliana no suele considerarse una ley. Las leyes mendelianas de transmisión son por lo tanto dos: la Ley de segregación de caracteres independientes (1ª ley) y la Ley de la Herencia Independiente de Caracteres (2ª ley). Véase la versión inglesa de este artículo para una exposición más rigorosa y sencilla.
Se puede poner un ejemplo con guisantes amarillo con genotipo de raza pura y otra variedad de guisantes con piel de color verde , la separación en gametos hace que cada descendiente posea como genotipo , Mendel observó además que la forma en que se mostraba esta nueva generación era con todos los guisantes amarillos (igual fenotipo). Esta es la razón por la que se denomina también a esta ley: Uniformidad de los híbridos de la primera generación
Se cumple la primera ley de Mendel en los cruzamientos en los que hay una herencia intermedia o sin dominancia, los individuos heterocigotos para cierta característica expresan una "condición intermedia" de los dos genes alelos. Por ejemplo: al cruzar dos plantas de líneas puras, una con flores rojas:AA y otras con flores blancas: aa, la generación filial uno será 100% heterocigota y 100% plantas con flores rosadas.
Ley de la segregación de caracteres independientes [editar]
Conocida también como Segunda Ley de Mendel o de la separación o disyunción de los alelos. Esta segunda ley establece que durante la formación de los gametos cada alelo de un par se separa del otro miembro para determinar la constitución genética del gameto filial. Es muy habitual representar las posibilidades de hibridación mediante un cuadro de Punnett.
G. Mendel obtuvo esta ley al cruzar diferentes variedades obtenidas de la anterior ley, pudo observar en sus experimentos que obtenía muchos guisantes con características de piel amarilla y otros (menos) con caraterísticas de piel verde, pudo comprobar que la proporción era de 3:4 de color amarilla y 1:4 de color verde.
La segregación asegura que en los gametos, los caracteres se separan y aparecen de acuerdo a como se organizan de generación en generación. La aparición siempre se hace una vez por generación y siempre los caracteres se separan por pares.
Ley de la Herencia Independiente de Caracteres [editar]
También denominada como Tercera ley de Mendel o ley de la herencia independiente de caracteres. Contempla la posibilidad de investigar dos caracteres distintos (por ejemplo: tipo de hoja y longitud del tallo, color de ojos y color de pelo, etc.). Cada uno de ellos se transmite a las siguientes generaciones, siguiendo las leyes anteriores con completa independencia de la presencia del otro carácter.
Patrones de Herencia Mendeliana Mendel describió dos tipos de "factores" (genes) de acuerdo a su expresión fenotípica en la descendencia, los dominantes y los recesivos, pero existe otro factor a tener en cuenta en el humano y es el hecho de que los individuos de sexo femenino tienen dos cromosomas X mientras los masculinos tienen un cromosoma X y uno Y, con lo cual quedan conformados 4 modos o "patrones" según los cuales se puede trasmitir una mutación simple: 1. Gen dominante ubicado en un autosoma (herencia autosómica dominante) 2. Gen recesivo ubicado en un autosoma (herencia autosómica recesiva) 3. Gen dominante situado en el cromosoma X (herencia dominante ligada al X) 4. Gen recesivo situado en el cromosoma X (herencia recesiva ligada al cromosoma X) ¿Por qué no se menciona la herencia de los genes situados en el cromosoma Y? Estructura génica del cromosoma Y Concepto de hemicigótico Por tener un solo cromosoma X, a los individuos de sexo masculino no se les pueden aplicar los términos "homocigoto" o "heterocigoto" para genes ubicados en este cromosoma. "YA SEAN GENES QUE EXPRESEN EL CARACTER DOMINANTES O RECESIVOS, SI ESTÁN SITUADOS EN EL CROMOSOMA X LOS VARONES SIEMPRE LO EXPRESARÁN Y AL INDIVIDUO QUE LO PORTA SE LE DENOMINA HEMICIGOTO" De lo anterior se deduce que puesto que las mujeres tienen un solo tipo de cromosomas sexuales, el X, sus gametos siempre tendrán la dotación cromosómica 23,X, mientras los masculinos pueden portar una X, dando lugar a un individuo femenino, o una Y, con lo que se originaría un individuo masculino. Debido a esto se dice que las mujeres son homogaméticas (todos sus gametos tienen igual constitución) y que los hombres son heterogaméticos (tienen gametos 23,X y 23,Y). Efecto de la inactivación del cromosoma X en la expresión de genes localizados en el cromosoma X. A diferencia del cromosoma Y, el X tiene gran cantidad de genes activos que codifican para importantes productos, tales como el factor VIII de la coagulación. Podría pensarse, por tanto, que si las mujeres tienen dos X deben tener el doble de los productos o enzimas cuyos genes están en ese cromosoma con relación a los individuos del sexo masculino, sin embargo, esto no ocurre así pues de los dos X con que cuenta una célula femenina, muy temprano en el desarrollo embrionario, en el estadía de mórula, uno de ellos se condensa, se inactiva se adosa a la membrana nuclear pasando a constituir el cuerpo de Barr. Hay dos aspectos muy importantes en este proceso: 1. Se inactiva al azar cualquiera de las dos X, ya sea la heredada de la madre o del padre 2. Las células que deriven de esta durante el proceso de crecimiento y desarrollo mantendrán en lo adelante inactivado el mismo cromosoma X El árbol genealógico como instrumento de estudio de la herencias en el humano. Simbología para la realización del árbol genealógico. Confección del Arbol Genealógico . Como en cualquier otra especialidad médica, en Genética adquiere enorme importancia el interrogatorio el individuo enfermo y sus familiares, pero, adicionalmente, en Genética es vital establecer los lazos de parentesco entre los individuos afectados y los supuestamente sanos, por eso se utiliza el llamado "árbol genealógico" o pedigree en el que mediante símbolos internacionalmente reconocidos se describe la composición de una familia, los individuos sanos y enfermos, así como el número de abortos, fallecidos etc. En la siguiente figura se muestran los principales símbolos.

Herencias dominantes, (autosómicas y ligadas al cromosoma X) Cuando el gen productor de una determinada enfermedad o característica se expresa aún estando en una sola dosis se denomina Dominante y las familias donde se segrega muestran un árbol genealógico en que, como regla, hay varios individuos que lo expresan y los afectados tienen un progenitor igualmente afectado- No obstante, hay diferencias de acuerdo a si el gen está ubicado en un autosoma o en el cromosoma X
Herencia Autosómica dominante:

Compruebe que se cumplen los siguientes hechos: -Varios individuos afectados -Los afectados son hijos de afectados -Se afectan por igual hombres y mujeres -Como regla, la mitad de la descendencia de un afectado hereda la afección. -Los individuos sanos tienen hijos sanos. -Hay hombres afectados hijos de hombres afectados (lo cual excluye la posibilidad de que el gen causante de la afección está ubicado en el cromosoma X, que en los varones procede de la madre) -El patrón ofrece un aspecto vertical Son estos precisamente los criterios que debemos definir ante un árbol genealógico para plantear como modo de herencia el autosómico dominante. En este caso los individuos afectados son usualmente heterocigóticos y tienen un riesgo del 50% en cada intento reproductivo de que su hijo herede la afección independientemente de su sexo. Herencia dominante ligada al X Aunque el gen sea dominante, si está ubicado en el cromosoma X, el árbol genealógico suele mostrar algunas diferencias con respecto al de la herencia autosómica dominante. Observe el siguiente árbol:

-Aunque los afectados usualmente son hijos de afectados y la mitad de la descendencia presenta la afección, no podemos identificar varones que hayan heredado la afección de su padre, o sea, no hay trasmisión varón-varón, puesto que los padres dan a sus hijos el cromosoma Y. -Igualmente llama la atención que hay un predominio de mujeres afectadas pues mientras estas pueden heredar el gen de su madre o de su padre, los varones sólo lo adquieren de su madre. -Una mujer afectada tendrá el 50% de su descendencia afectada, mientras que el hombre tendrá 100% de hijas afectadas y ningún hijo afectado. Herencias recesivas, autosómicas y ligadas al cromosoma X. Cuando el gen causante de la afección es recesivo, por regla general el número de afectados es mucho menor y suele limitarse a la descendencia de una pareja, pero es más evidente la diferencia en la trasmisión según la mutación esté situada en un autosoma o en el cromosoma X. Herencia autosómica recesiva. Observe detenidamente el siguiente árbol genealógico:
Llama la atención la aparición de un individuo afectado fruto de dos familias sin antecedentes previos. Esto ocurre pues ambos padres de este individuo son heterocigóticos para la mutación, la cual, por ser recesiva, no se expresa ya que existe un alelo dominante normal, pero, como estudiamos en las leyes de Mendel, existe un 25% en cada embarazo, de que ambos padres trasmitan el alelo mutado, independientemente del sexo del nuevo individuo. Por aparecer usualmente en la descendencia de un matrimonio, se dice que su patrón es horizontal. Otro aspecto a señalar es que cuando existe consanguinidad, aumenta la probabilidad de aparición de este tipo de afecciones, debido a que ambos padres comparten una parte de su genoma proporcional al grado de parentesco entre ellos.
Herencia recesiva ligada al X Observe el siguiente árbol genealógico:Es evidente que los individuos afectados son todos del sexo masculino; esto se justifica porque al tener la mujer dos X y ser el gen recesivo, el alelo dominante normal impide su expresión, mientras el varón Hemicigótico si tiene la mutación la expresará. También se observa que entre dos varones afectados existe una mujer, que en este caso es portadora de la mutación. La probabilidad de descendencia afectada dependerá del sexo del progenitor que porta la mutación: -Un hombre enfermo tendrá 100% de hijas portadoras y 100% de hijos sanos. -Una mujer portadora tendrá 50% de sus hijas portadoras y 50% de hijos varones afectados

LA EVOLUCION

¿QUÉ ES EVOLUCIÓN?

Evolución es la rama de la Biología que se refiere a todos los cambios que han originado la diversidad de los seres vivientes en la Tierra, desde sus orígenes hasta el presente.

Actualmente los biólogos estamos convencidos, por las evidencias acumuladas, que todas las formas vivientes, incluyendo al ser humano, surgieron paulatinamente en el curso de la historia de la Tierra, y de que todos los organismos se originaron a partir de formas primitivas simplificadas.

La evolución es una teoría por el contexto de las pruebas científicas confirmadas por la observación del proceso evolutivo en comunidades modernas. Ésto nos permite mantener un alto grado de certeza acerca de la presencia actual de los mecanismos evolutivos que trabajan en la naturaleza, de tal forma que no podemos interpretar erróneamente el Método Científico. Sólo la gente obstinada no ve evidencia en la evolución.

Cuando un enunciado no se ha verificado se denomina "hipótesis", pero si la hipótesis es sometida a pruebas experimentales y se verifica como cierta, entonces alcanza el nivel de "Teoría".

La evolución depende directamente de las leyes genéticas y se considera como un principio de orden en la naturaleza.



ESTRATEGIAS EVOLUTIVAS

LA EVOLUCIÓN DE LOS SERES VIVOS OCURRE POR LA CONFLUENCIA DE TRES COMPONENTES INTERDEPENDENTES DETERMINANTES:


SELECCIÓN NATURAL- es el conjunto de modificaciones en el ambiente de los organismos (puede ser ejercido a un nivel de individuo o a nivel comunitario), graduales o repentinas, las cuales provocan una tensión particular capaz de aniquilar a los individuos o a las especies menos adaptables, y hacer para prevalecer a los mejor adaptables. Un buen ejemplo de Selección Natural es la pericia para realizar movimientos natatorios. Históricamente, los genes que determinan esta característica estaban en la pila genética de la población antes de que se presentara la ocasión de utilizarla. Algunos miembros de la población poseían los genes, mientras que otros carecían de ellos. Cuando ocurrió una inundación, los que poseían los genes ventajosos sobrevivieron; por otro lado, los que eran incapaces de ejecutar los movimientos natatorios perecieron, porque ellos carecían de los genes que determinan dicha habilidad.


NEUTRALIDAD- este concepto se refiere a la presencia de genes que determinan características fenotípicas nuevas, las cuales se acumulan en el caudal genético de la población, sin actuar favoreciendo a los genes en la supervivencia del individuo, ni contribuyendo para su exterminio. Una ilustración perceptible es la presencia de pezones en mamíferos macho, cuya funcionalidad es obsoleta porque los machos no amamantan a sus crías. Sin embargo, el gene que determina el desarrollo de los pezones continúa expresándose y transmitiéndose a la descendencia.


ESTRUCTURACIÓN- aún cuando no se produzca una presión selectiva sobre los individuos, ocurren en ellos algunos cambios estructurales que propician una ventaja funcional sobre aquellos individuos que carecen de esas modificaciones. De esta manera, los cambios estructurales que conducen a una variación en la función, transfiere al individuo hacia otra línea evolutiva, incrementando también su habilidad para ocupar otros nichos ecológicos, o para ser movidos entre varios nichos de acuerdo con sus requisitos para sobrevivir. Un ejemplo de Estructuración es la posición erecta y locomoción bípeda de los seres humanos. Los humanos no se enderezaron por necesidad, pues el cambio estructural ocurrió como un acontecimiento al azar, y no en función de un acontecimiento selectivo en el entorno. Cuando se modificó la postura de los humanos, los individuos se encontraron ante la disyuntiva de abandonar su nicho ecológico previo o de permanecer en él sometidos a una desventaja peligrosa para la supervivencia de la especie; la nueva postura los calificó para habitar en áreas más abiertas y menos limitadas en recursos. No impidió que los individuos pudieran seguir habitando en su nichos ecológicos previos, así se amplió el mundo del Homo sapiens.

Algunas partes del Genoma son más capaces de tomar la sucesión de nucleótidos, y la manera de llevarse a cabo reside en la recombinación del material genético, basado sobre la historia de éxito de los antepasados. Así, las biomoléculas tienen la capacidad de "ver" y "escoger" los cambios más apropiados para producir una función nueva, o la menos viable que podría suspender algo esencial. Los genomas codifican esta estrategia, y los organismos han intercambiado información genética por la transferencia horizontal de genes. Sucedió en el pasado, sucede ahora, y estará sucediendo en el futuro. La Biodiversidad es una fuente de información genética, y los intercambios de información ocurren entre organismos variados, así que ésta llega a ser una buena razón para comenzar con la prioridad en la conservación de la Biodiversidad.

Hay un factor determinante que favorece y dirige los cambios evolutivos: la Selección Natural. La selección natural es el conjunto de presiones externas e internas que provocan una tensión dentro de una comunidad específica afectando a cada individuo. Los óptimos genes propicios sobrevivirán a esas presiones, y los menos adecuados desaparecerán. Pero ésto no siempre es así, pues en muchas ocasiones los genes para la conducta de cooperación en grupo favorecen la supervivencia de los "débiles". Si un individuo posee una combinación propicia de alelos, entonces esos alelos serán transmitidos a su progenie, de tal manera que los alelos favorables aparecerán en una proporción mayor en las generaciones ntes




EVOLUCION DEL HOMBRE
Los primates
Para los el punto de inicio de la historia de la humanidad empezó con la aparición de los primates, hace unos 65 millones de años. Los primeros de ellos eran unos pequeños seres que empezaron a vivir en los árboles en lugar de permanecer en el suelo, como la mayoría de los mamíferos. Entre las especies que pertenecen a los primates están, además del ser humano, los simios, monos y musarañas. Durante su desarrollo evolutivo, estos primates se hicieron de ciertos rasgos especiales: buena visión, manos con las que se pueden sujetar firmemente objetos y un cerebro relativamente grande.
Por pertenecer a la misma familia, las diferentes especies de primates, en especial monos y simios, guardan similitud con el ser humano. Según algunos estudiosos, el último ancestro común entre el ser humano y el chimpancé, nuestro primo más cercano, existió hace 6 ó 7 millones de años. Después de esta separación apareció el primer , el llamado Australopithecus, que posteriormente dio lugar al Homo habilis, el primer especímen del género Homo, al que pertenecemos los seres humanos modernos.
Los cambios en la biología de los primates que desembocaron en los primeros homínidos se dieron en África: en el Este y en el Sur. El cañon de Olduvai, en Tanzania, el noreste de Africa, es uno de los lugares donde se han encontrado los fósiles más antiguos que aportan datos sobre la historia evolutiva del ser humano.
Homínidos
Los límites que señalen el comienzo y el final de los distintos homínidos no son exactos, se calcula que aparecieron hace 4.5 millones de años y se extinguieron hace unos 2 millones de años. Durante mucho tiempo debieron coexistir diferentes tipos, y el final de una especie se entremezcló con las generaciones de otra en el transcurso de miles de años.
Los científicos distinguen entre varias especies de homínidos. Todos ellos comparten algunas características básicas:
Pueden mantenerse erguidos y caminar en dos pies Tienen un cerebro relativamente grande en relación con el de los monos Su mano tiene un dedo pulgar desarrollado que les permite manipular objetos.
Australopithecus
El Australopithecus es el homínido más antiguo que se conoce. Australopithecus quiere decir "simio sudafricano" y se estima su antigüedad hasta en 4 millones de años.
En 1925, el paleontólogo Raymond Dart descubrió el cráneo de un Australopithecus en Taung, al sur de África. El descubrimiento de este fósil, ancestro del ser humano e íntimamente relacionado con el mono, provocó polémica porque se encontró en África y hasta entonces se había fundado el origen del ser humano en Europa. En lugares cercanos a este descubrimiento se encontraron otras especies de Australopithecus (afarensis, africanus, robustus, boisei), que confirmaron el origen del hombre en África.
Sus restos demostraron que estos homínidos medían más de un metro de estatura y que sus caderas, piernas y pies se aparecían más a los de los seres humanos que a los de los simios. El cerebro se asemejaba al de estos animales y tenía un tamaño similar al del gorila. La mandíbula era grande y el mentón hundido. Caminaban erguidos y podían correr, a diferencia de los simios. Sus largos brazos acababan en manos propiamente dichas, con las yemas de los dedos planas, como las de los seres humanos. Se cree que estos seres eran carnívoros, pues a su alrededor se han encontrado huesos y cráneos que habían sido machacados para extraer el tuétano y los sesos.
Quizá la especie más famosa de Australopithecus es la Australopithecus afarensis, gracias al descubrimiento, en 1974 en Hadar, Etiopía, de los restos de , una joven mujer de la que se encontraron 52 huesos de un esqueleto semicompleto, con una edad aproximada de 3.2 millones de años. Esta especie trepaba árboles pero también podía caminar en dos pies. Durante mucho tiempo se pensó en Lucy como la abuela de la humanidad. Sin embargo, esta especie pudo haberse extinguido sin que a partir de ella se continuaran las ramas de la evolución humana.
Un descubrimiento reciente: El Kenyanthropus platyops
El género Homo
La mayoría de los científicos aceptan que hay dos grandes grupos, o géneros, de homínidos en los últimos 4 millones de años. Uno de ellos es el género Homo, que apareció hace 2.5 millones de años y que incluye por lo menos tres especies: Homo habilis, Homo erectus, Homo sapiens. Uno de los grandes misterios de los estudiosos de la prehistoria es cuándo, cómo y dónde el género Homo remplazó a los Australopithecus.

Arbol genealógico que representa la posible evolución del hombre. Hace algún tiempo, el diagrama hubiera sido una línea recta, pero en la actualidad los especialistas piensan que la situación fue más compleja.
Homo habilis y Homo erectus
En zonas del este de África se encontraron restos de otros homínidos que existieron al mismo tiempo que los Australopithecus, lo que viene a demostrar que esta especie de homínidos no era la única sobre la Tierra hace dos o tres millones de años. Como los homínidos que se encontraron parecen mucho más "hombres", se les ha puesto el nombre de Homo. La primera especie del género Homo apareció hace 2.5 millones de años y se dispersó gradualmente por Africa, Europa y Asia.
En sus primeras manifestaciones se le conoce como Homo habilis, y tenía una capacidad craneana de 680 cm3 y su altura alcanzaba el metro y 55 cms. Era robusto, ágil, caminaba erguido y tenía desarrollada la capacidad prensil de sus manos. Sabía usar el fuego, pero no producirlo, y se protegía en cuevas. Vivía de recolectar semillas, raíces, frutos y ocasionalmente comía carne.
La especie que se desarrolló posteriormente a esta se denomina Homo erectus, hace 1.5 millones de años. La diferencia fundamental del Homo erectus y los homínidos que lo antecedieron radica en el tamaño, sobre todo del cerebro. Su cuerpo es la culminación de la evolución biológica de los homínidos: era más alto, más delgado, capaz de moverse rápidamente en dos pies, tenía el pulgar más separado de la mano y su capacidad craneana llegó a ser de 1250 cm3. También fabricó herramientas, como el hacha de mano de piedra, y aprendió a conservar el fuego, aunque no podía generarlo. Los científicos creen que esta especie se propagó hacia el Norte, por Europa (hasta Francia) y Asia, durante 4 000 años. Esta especie duró diez veces más tiempo de la que lleva sobre la tierra el ser humano moderno. Entre los Homo erectus que se han encontrado restos están el "Hombre de Java" (700 mil años) y el "Hombre de Pekín" (400 mil años).
Homo sapiens neanderthalis
Una o más subespecies del Homo erectus evolucionaron hasta llegar al Homo sapiens, un nuevo tipo físico. Los restos más antiguos del Homo sapiens tienen una edad entre 250 mil y 50 mil años. En sentido estricto se le denomina Homo sapiens neanderthalis: el hombre de Neanderthal. Recibe este nombre por el lugar dónde se encontró el primer cráneo que demostraba la existencia de su especie, en el valle de Neander, en Alemania.
Los hombres de Neanderthal tenían el cerebro de mayor tamaño y el cráneo distinto que del Homo erectus. Su mentón estaba hundido y su constitución era muy gruesa. Esta especie se encontró desde Europa occidental y Marruecos hasta China, pasando por Irak e Irán.
Los neanderthales estaban más capacitados y eran mentalmente más avanzados que ningún otro ser que hubiera habitado en la Tierra anteriormente. Esta especie humana vivió la última glaciación y se adaptó a ella construyendo hogares excavados en el suelo o en cavernas y manteniendo hogueras encendidas dentro de ellos. Los neanderthales que vivían en las zonas del norte de Europa fueron cazadores y se especializaron en atrapar a los grandes mamíferos árticos: el mamut y el rinoceronte lanudo, cuyos restos llevaban arrastrando hasta la entrada de sus cuevas, en donde los cortaban en pedazos.
Los hombres de Neanderthal se cubrían con pieles y disponían de mejores útiles de piedra que sus antepasados. Además realizaban una actividad novedosa: enterraban a sus muertos con gran esmero (p.e. en Asia se encontró un niño de Neanderthal enterrado entre un círculo de cuernos de animales). Los muertos no sólo eran enterrados cuidadosamente, sino que también el muerto era provisto de utensilios y comida. Es posible que los enterramientos y los vestigios de rituales en los que aparecen animales señalen los inicios de la religión. Tal vez creían ya en una especie de continuación de la vida después de la muerte.
El hombre de Neaderthal desapareció bruscamente, su lugar fue ocupado por los hombres modernos, hace unos 35 mil años.
Homo sapiens sapiens
Después del Neanderthal vino el Homo sapiens sapiens, que es la especie a la cual pertenecemos los seres humanos modernos. Se han encontrado restos de los primeros miembros de esta rama en el Cercano Oriente y los Balcanes, fechados entre el 50 mil y el 40 mil antes de Nuestra Era. Quizá avanzaron hacia el norte y occidente a medida que retrocedía el hielo. Estos seres humanos también cruzaron el estrecho de Bering, penetrando así en el continente americano y llegaron a Australia hace unos 25 mil años.
Los Homo sapiens sapiens se extendieron por la Tierra más que ninguno de los primates anteriores. Un grupo prehistórico de esta especie fueron los hombres de Cro-Magnon (32 mil años), llamados así por la cueva cercana a la aldea de Les Eyzies, Francia, donde fueron hallados sus restos óseos. Los cro-magnones vivieron la última glaciación y aunque su cerebro no era mayor que el del hombre de Neanderthal, le dieron nuevos usos pues, entre otras cosas, hicieron y mejoraron muchos instrumentos y armas. Los cro-magnones son también los artistas más antiguos. El hombre actual no difiere básicamente ni en capacidad cerebral, ni en postura, ni en otros rasgos físicos, del modelo que la evolución había logrado en el hombre de Cro-Magnon.
Para los biólogos, todos los seres humanos formamos parte de la misma especie (Homo sapiens sapiens) aunque hay distintas razas. Las líneas generales de distribución racial se iniciaron en la Prehistoria. Desde el punto de vista físico se pueden reconocer por lo menos cuatro categorías raciales fundamentales: negroide, caucasoide, mongoloide, australoide.
Lo que dio al hombre moderno su control sobre la Tierra no fue su físico, sino su capacidad de aprovechar y transmitir a sus descendientes la información cultural por medio de su inteligencia.
Un cerebro para sobrevivir







METODOS ANTICONCEPTIVOS

Método anticonceptivo
Un método anticonceptivo es cualquier forma de impedir la fecundación o concepción al mantener relaciones sexuales. También se llama contracepción o anticoncepción. Los métodos anticonceptivos son una forma de control de la natalidad.
Tipos de métodos anticonceptivos [editar]
Métodos naturales [editar]
Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación de la sexualidad a las fases fértiles o infértiles del ciclo en función de que se desee o no una concepción. Superados ya los métodos predictivos, como el famoso método de Ogino/Knauss, y técnicas ancestrales como el Coitus interruptus; hoy en día su fiabilidad es similar a la de otros métodos no quirúrgicos.{Frank-Herrmann y cols. Hum Reprod 2007}
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia. En cuanto a los métodos modernos, el más eficaz es el síntotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.
Métodos simples [editar]
Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es áltamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad. Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia.
Método de la amenorrea de la lactancia (MELA) Después de parto existe un período más o menos largo de inactividad ovárica y, por tanto, de infertilidad. Dicho tiempo de infertilidad depende básicamente de si la mujer amamanta o no al bebé, así como de la intensidad de la lactancia materna. El método MELA define los criterios que deben cumplirse para una aplicación segura del método para la regulación de la fertilidad.
Métodos compuestos [editar]
Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional que que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).
Métodos de barrera [editar]
Preservativo. Tiene una versión femenina (Preservativo femenino)[1]
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma a la vagina.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH y el SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH y el SIDA) pasen de un miembro de la pareja a otro
Métodos químicos y hormonales [editar]


Píldora anticonceptiva
Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol 9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la Píldora anticonceptiva
·
Anticonceptivo subdérmico. Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.

·
Anillo vaginal. Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.

·
Píldora trifásica. Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.

·
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.

·
Píldora postcoito. Método hormonal de uso ocasional. El anticonceptivo postcoito, también conocido como anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas.
·
También hay anticoncepción hormonal que suprime durante la regla.
·
Actualmente la anticoncepción hormonal másculina está en desarrollo.
Parches anticonceptivos.
Mediante anillos vaginales.
Método combinado [editar]
Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.
Dispositivo intrauterino (DIU) [editar]
Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado.


Dispositivo Intrauterino
Métodos anticonceptivos irreversibles [editar]
Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomia no impide la eyaculación. Es un proceso reversible aunque con dificultades.
Castración
Métodos de emergencia [editar]
Píldora del día después. Tiene bastantes efectos secundarios.
El método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Prácticas alternativas [editar]
Como alternativa se puede mantener otro tipo relaciones sexuales sin coito para evitar o reducir la posibilidad de embarazo, y en caso del petting también se evitan las enfermedades venéreas, aunque en otras prácticas, como el sexo anal el riesgo es mayor. En cualquier caso si el semen alcanza de entrada de la vagina puede producirse embarazo.
El sexo oral evita el embarazo y el riesgo de contraer alguna enfermedad es sólo algo menor.
El sexo anal, como ya se ha dicho, tiene mayor riesgo de enfermedades.
Consideraciones éticas [editar]
Algunos métodos anticonceptivos, como el DIU, actúan también al impedir la anidación del preembrión (óvulo ya fecundado) no implantado en el endometrio materno. Es por ello que hay personas que los consideran como métodos anticonceptivos abortivos, y los rechazan, haciendo una distinción sobre los métodos anticonceptivos que consideran como no abortivos (ej. método combinado: preservativo + crema espermicida).
Los métodos abortivos como la pildora de mifepristona (RU-486) producen una reducción relativa del número de abortos en las estadísticas, pues trasladan los "macro-abortos" a "micro-abortos", es decir, a abortos del embrión por implantarse o recién implantado. El concepto de control de natalidad es más amplio pues incluye al aborto e incluso al infanticidio y no debe confundirse ni con el método anticonceptivo ni con el aborto.


SEXUALIDAD

Sexualidad

La sexualidad es el conjunto de condiciones anatómicas, fisiológicas y psicológico-afectivas del mundo animal que caracterizan cada sexo. También es el conjunto de fenómenos emocionales y de conducta relacionados con el sexo, que marcan de manera decisiva al ser humano en todas las fases de su desarrollo.
Durante siglos se consideró que la sexualidad en los animales y en los hombres era básicamente de tipo instintivo. En esta creencia se basaron las teorías para fijar las formas no naturales de la sexualidad, entre las que se incluían todas aquellas prácticas no dirigidas a la procreación.
Hoy, sin embargo, se sabe que también algunos mamíferos muy desarrollados, como los delfines o algunos pingüinos, presentan un comportamiento sexual diferenciado, que incluye, además de homosexualidad (observada en más de 1500 especies de animales),[1] variantes de la masturbación y de la violación. La psicología moderna deduce, por tanto, que la sexualidad puede o debe ser aprendida[sin referencias].
//
Sexualidad humana]
Al igual que los otros primates, los seres humanos utilizan la excitación sexual con fines reproductivos y para el mantenimiento de vínculos sociales, pero le agregan el goce y el placer propio y el del otro. El sexo también desarrolla facetas profundas de la afectividad y la conciencia de la personalidad. En relación a esto, muchas culturas dan un sentido religioso o espiritual al acto sexual (Véase Taoísmo, Tantra), así como ven en ello un método para mejorar (o perder) la salud.
La complejidad de los comportamientos sexuales de los humanos es producto de su cultura, su inteligencia y de sus complejas sociedades, y no están gobernados enteramente por los instintos, como ocurre en casi todos los animales. Sin embargo, el motor base de gran parte del comportamiento sexual humano siguen siendo los impulsos biológicos, aunque su forma y expresión dependen de la cultura y de elecciones personales; esto da lugar a una gama muy compleja de comportamientos sexuales. En muchas culturas, la mujer lleva el peso de la preservación de la especie.
Desde el punto de vista psicológico,la sexualidad es la manera de vivir la propia sexuación. Es un concepto amplio que abarca todo lo relacionado con la realidad sexo. Cada persona tiene su propio modo de vivir el hecho de ser mujer u hombre, su propia manera de situarse en el mundo en tanto que tales. La sexualidad incluye la identidad sexual y de género que constituyen la conciencia de ser una persona sexuada, con el significado que cada persona dé a este hecho. La sexualidad se manifiesta a través de los roles genéricos que, a su vez, son la expresión de la propia identidad sexual y de género.
La diversidad sexual nos indica que existen muchos modos de ser mujer u hombre, más allá de los rígidos estereotipos, siendo el resultado de la propia biografía, que se desarrolla en un contexto sociocultural. Hoy en día se utilizan las siglas GLTB (o LGTB) para designar al colectivo de Gays, Lesbianas, Transexuales y Bisexuales.
La sexualidad se manifiesta también a través del deseo erótico que genera la búsqueda de placer erótico a través de las relaciones sexuales, es decir, comportamientos sexuales tanto autoeróticos (masturbación), como heteroeróticos (dirigidos hacia otras personas, éstos a su vez pueden ser heterosexuales u homosexuales). El deseo erótico, que es una emoción compleja, es la fuente motivacional de los comportamientos sexuales. El concepto de sexualidad, por tanto, no se refiere exclusivamente a las “relaciones sexuales”, sino que éstas son tan sólo una parte de aquel.